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Topicality of Research. The study of the influence of a change
of variable on analytical properties of a function is one of the im-
portant problems in harmonic analysis. The following two main
questions were the object of research in this direction: 1) Is it
possible to achieve fulfillment of a given analytical property of a
function by means of a change of variable of given type? 2) What
kind of changes of variable conserves a given analytical property of
a function? In connection with above mentioned problems, the im-
portant results were obtained by H. Bohr, A. Beurling and H. Hel-
son, A. Olevskii, J.-P. Kahane and Y. Katznelson, A. Saakyan,
U. Jurkat and D. Waterman, A. Baerstein and D. Waterman, in
the case, when analytical property of a function is an uniform or
absolute convergence of Fourier trigonometric series and a change
of variable is a homeomorphism of torus. The possibility of im-
provement and conservation of function differential properties by
means of homeomorphic mapping were studied by E. Brukner and
C. Goffman, M. Laczkovich and D. Preiss. Abovementioned results
are given in the review work by Olevskii [11] and in the monograph
by C. Goffman, T. Nishiura and D. Waterman [4].

The study of the influence of a choice of coordinate axes (i.c.
changing a variable, which is a rotation around the origin) on the
properties of summable functions of several variables was initi-
ated by A.Zygmund, in particular, he posed a problem concern-
ing the possibility of achieving strong differentiability by means
of rotations. The problems on the possibility of achieving and
conservation of the properties of strong integral means’ conver-
gence, convergence of multiple Fourier series and Fourier integrals
in Pringsheim sense and belonging to the classes of functions with
bounded variation in various senses in case of rotations, were stud-
ied by J. Marstrand, B. Lopez-Melero, A. Stokolos, G. G. Oniani,
G. Lepsveridze, G. Karagulyan, M. Dyachenko and O. Dragoshan-
skii.
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The Aim of Dissertation. The proposed dissertation is aimed
at: the study of A. Zygmund’s problem on possibility of achieve-
ment of strong differentiability of an integral by means of a ro-
tation (i.e. choosing coordinate axes) for general classes of bases;
investigation of question of conservation of integral differentiation
property in case of rotations for translation invariant bases consist-
ing of multi-dimensional intervals; the study of singularities from
the standpoint of differentiability of the integral with respect to
a given basis, which may have a fixed function for various choices
of coordinate axes; the study of differential properties of singular
Lebesgue-Stieltjes measures.

Research Novelty.

1) There is given a solution of A. Zygmund’s problem for
Busemann-Feller and homothecy invariant bases, in par-
ticular, it is established, that if a basis of such type is
nonstandard (i.e. if it does not differentiate the integral of
some summable function), then there exists a function for
which the differentiability of integral can not be achieved
by means of rotations;

2) It is established that for an arbitrary translation invariant
nonstandard basis consisting of multi-dimensional inter-
vals, integral differentiation property is not conserved in
case of rotations;

3) It is introduced the definitions of sets of singular rotations.

These sets express the singularities, which may have a fixed

function for various choices of coordinate axes from the

standpoint of differentiability of the integral with respect
to a given basis. It is established topological structure of
sets of singular rotations;

It is given a characterization of not more than countable

sets of singular rotations for an arbitrary translation in-

variant nonstandard basis formed of two-dimensional in-
tervals;
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5) It is given a complete characterization of sets of singular
rotations for an arbitrary Busemann-Feller, homothecy in-
variant, nonstandard and symmetric basis formed of two-
dimensional intervals.

6) It is established that singular Lebesgue-Stieltjes measures
do not have the property of vanishing of means almost ev-
erywhere for any translation invariant nonstandard basis.

Approbation of Work. The dissertation results have been pre-
sented at V International Conference of the Georgian Mathemat-
ical Union (September 8-12, 2014, Batumi, Georgia); VI Inter-
national Conference of the Georgian Mathematical Union (July
12-16, 2015, Batumi, Georgia); Swedish-Georgian Conference in
Analysis & Dynamical Systems (July 15-22, 2015, Thilisi, Geor-
gia); International Conference “Function Spaces and Function Ap-
proximation Theory” dedicated to the 110th anniversary of Aca-
demician S. M. Nikolskii (May 25-29, 2015, Moscow, Russia); In-
ternational Conference “Harmonic Analysis and Integral theory”
dedicated to the 80th Jubelee of Professor V.A. Skvortsov (Sep-
tember 23-24, 2015, Moscow, Russia).

Publication. There are published six scientific works, which are
listed below the text of this author’s abstract.

The size and the structure. The dissertation contains 80 pages.
It consists of the introduction, six sections and bibliography. The
bibliography contains 32 names.

Content of Dissertation

First let us introduce some definitions and recall some results
from the differentiation theory of integrals.

A mapping B defined on R" is said to be a differentiation basis
if for every z € R", B(z) is a family of bounded measurable sets
with positive measure and containing x, such that there exists a
sequence Ry € B(z) (k € N) with kll.l?o diam Ry, = 0.




For f € L(R"), the numbers
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are called the upper and the lower derivative, respectively, of the
integral of f at a point x. If the upper and the lower derivative
coincide, then their combined value is called the derivative of [f
at a point x and denoted by Dp([f,z). We say that the basis
B differentiates [f (or [f is differentiable with respect to B) if
Dp([f,z) = Dp([f,z) = f(z) for almost all z € R™. If this is
true for each f in the class of functions X we say that B differen-
tiates X.
Denote by Q = Q(R"),I = I(R") and P = P(R") the bases of
for which:
® Q(z) (z € R") consists of all open n-dimensional cubic
intervals containing x;
e I(z) (z € R") consists of all open n-dimensional intervals
containing z;
e P(z) (x € R™) consists of all open n-dimensional rectangles
containing z.
Note that differentiation with respect to Q and I are called
ordinary and strong differentiation, respectively.
About the bases Q, I and P there are known following funda-
mental results (see e.g. [5]):

The basis of cubes Q differentiates L(R™) (A. Lebesgue, 1910);

The basis of intervals 1 differentiates L(1 + In* L)"~1(R")
(B. Jessen, I. Marcinkiewicz and A. Zygmund, 1935);

The basis of intervals 1 does not differentiate L(R™), moreover,
I does not differentiate any integral class @(L)(R™) wider than
L(1+ In* L)""Y(R™) (S. Saks, 1935);

The basis of rectangles P does not differentiate even the class
L*(R™) N L(R™) (A. Zygmund, 1927).

For a basis B, we denote by B the union of families B(z) (z €

R™).

By I',, denote the family of all rotations in R".
We say that a function f is reduced in the class F by a trans-
formation of a variable  if f o~ € F.

The work contains six sections.

In the first section of the work it is studied a problem of A. Zyg-
mund concerning a possibility of improvement of function prop-
erties hy means of choosing of coordinate axes(i.e. by means of a
change of variable which is a rotation).

The question on possibility of improvement of a function prop-
erties by means of change of variable has quite rich history. Con-
cerning the possibility of improvement Fourier trigonometric series
behaviour by means of homeomorphic change of variable there are
known important results of H. Bohr, A. Olevskii, J.-P. Kahane
and Y. Katznelson, A. Saakyan (see e.g. [11], [4], [18]).

In the integral differentiation theory the study of the above
mentioned question was began by the following problem of A. Zyg-
mund (see [5, Ch. IV, §2]): Can an arbitrary function f € L(R?) be
reduced in the class Fy by means of a rotation of coordinate azes?

J. Marstrand [10] gave the negative answer to the problem by
constructing a non-negative function f € L(R?) such that f o v ¢
Fy for any rotation 4 € T's.

The problem of A. Zygmund in general setting is formulated as
follows: Let B be a translation invariant basis which does not dif-
ferentiate L(R™). Does there ezist a function f € L(R™) which can
not be reduced in class F by means of rotation of coordinate azes?
To formulate the known results in this direction let us introduce
some definitions.

For a translation invariant basis B by G. G. Oniani (see [12,
Ch. 11, §1] or [13]) it was defined the following function

= {ME (xw) > A}
[
op()) ‘l_l'rgegl_% Vi 0<A<1),
where V, is the ball with centre at the origin and with the radius ¢,
Here and below everywhere yg denotes the characteristic function
of a set E. We will call o spherical halo function of B.

It is easy to check that:
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A basis B is called:

translation invariant (briefly, TI-basis) if B(z) = {z+ R: R €
B(0)} for every x € R™;

homothecy invariant (briefly, HI-basis) if for every z € R", R €
B(z) and a homothethy H with the centre at 2 we have that
H(R) € B(z);

formed of sets from the class A if B C A;

conver if it is formed of the class of all convex sets;

Busemann-Feller basis if it is formed of open sets and the fol-
lowing condition holds: (z € R*, R € B(z),y € R) = R € B(y).

Let us introduce the following notation:

By is the class of all translation invariant bases;

By is the class of all homothecy invariant bases;

By is the class of all Busemann—Feller bases;

By, is the class of all bases which does not differentiate L(R").

Note that if B € Bgr N By, then B € By (see e.g. [12,
Ch. I, §3]). :

A basis B is called sub-basis of a basis B'(denoted as B C B')
if B(z) C B'(z) for every z € R". For a basis B by B we will
denote the class of all sub-basis of B. .

The mazimal operator My and truncated mazimal operator My
(6 > 0) corresponding to a basis B are defined as follows

1
My(N@) = s T /R I,

M@= sw o [,
ReB(x).diam R<s |B| Jr

where f € Lj,.(R") and z € R". )

Note that if B is translation invariant or Busemann-Feller basis,
then for any f the functions Dg ([ f,-), Dy ([ f,"), Mp(f) and
Mf;(f) are measurable (see e.g. [5] or [12]).

In what follows the dimension of the space R" is assumed to be
greater than 1.

For a basis B by Fg denote the class of all functions f € L(R")
the integrals of which are differentiable with respect to B.
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1) If B € By is a convex basis, then due to the following
cstimation (see [13, Lemma 1)) Mp(xv,)(z) < Ce/ dist(z, Ve) (= ¢

Vi) we have

) 3 - = (MB00) > A,

M=
2) If B € By N By, then
a8(N) = {Ma(xv) > A}l,

where V is the unit ball. ) )

For a translation invariant basis B by B. Lopes-Meltfro [9] it
was introduced the following weak variant of the spherical halo
function

/A

= _ = {ME (xv) > A} G<Xel
ap(A) = lim A ( )

Obviously,
gp(A) <op(d) (0<A<1).

We will say that a function o : (0,1) — (0,00) is non-regular if

ll_l'l':)/\ﬂ(/\) =00,

For n > 2 and 2 < k < n by I} denote the basis for which .','_f(z)
(z € R") consists of all open n-dimensional intervals containing =
and the lengthes of edges of which take not more than k values.
Note that I} = I. )

For a basis B denote by Sp the class of all non-negative func-
tions f € L(R") such that D ([ f 0v,z) = oo almost everywhere
for every v € I'y.

By A. Stokolos [19], B. Lépes-Melero [9] and G. G. Oniani [12,
Ch. II, §1] (see also [13]), respectively, were established the follow-
ing results.

Theorem A. For everyn > 2 and 2 < k < n the class Syp is
non-empty.

Theorem B. If a translation invariant basis B has a non-regular
weak spherical halo function G, then the class Sg is non-empty.




32

Theorem C. If a translation invariant basis B has a non-reqular
spherical halo function o, then the class Sp is non-empty.

Note that from the estimations: G5(\) < op()) and ap(A) >

ctIn*~1 1 it follows the implications: Theorem C = Theorem B
= Theorem A.

The following theorem gives the answer to Zygmund’s general-
ized problem for the class of bases Bpr N By N By..

Theorem 1.1. If B € Bpp N By N By, then the class Sp is
non-empty.

Theorem 1.1 we prove using Theorem C on the basis of the
following Lemma.

Lemma 1.4. If B € Bgp N By N By, then B has a non-regular
spherical halo function.

In the second section the question on the invariance of classes
of functions with differentiable integrals with respect to the class
of transformations of variable consisting of all rotations is studied.

A class of functions with good analytical properties may be
very sensitive with respect to changes of variable. Let us recall the
result of such type belonging to A. Beurling and H. Helson [1): Let
T be the unit circumference on the complex plane and A(T) be the
class of all continuous on'T functions having absolutely convergent
Fourier trigonometric series. For a homeomorphism ~y : T — T we
have that f € A(T) = f oy € A(T) if and only if  is of the type
y(e) = ek+a) where k € {~1,1} anda € [m, 7).

A class of functions F is called invariant with respect to a class
of transformations of a variable I' if (f € F,y €)= foye F.

Thus the only homeomorphisms with respect to which the class
A(T) is invariant are rotations, conjugation and their composi-
tions. In particular, there exists a dipheomorpism 7 : T — T with
respect to which A(T) is not invariant.

The dependence of the properties of functions of several vari-
ables on a choice of coordinate axes (i.e. on a rotation of the stan-
dard orthogonal coordinate system) were studied by different au-
thors.
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From the results of G. Lepsveridze [8], G. G. Oniani [14] and
A. Stokolos [20] it follows that the class Fy is not invariant with
respect to linear changes of a variable, in particular with respect to
rotations. An analogous result was established by O. Dragoshan-
skii [2] for the class of continuous functions of two variables, having
an a.e. converging Fourier series (Fourier integral) in Pringsheim
sense.

G. Karagulyan [6] gave, in the two-dimensional case, a com-
plete characterization of singularities from the standpoint of dif-
ferentiability with respect to a basis I which may have the inte-
gral of a fixed function for various choices of a coordinate sys-
tem. The multi-dimensional aspect of this question was studied
by G. G. Oniani [15].

M. Dyachenko [3] considered a problem of invariance with re-
spect to I'y of two-dimensional classes of functions with bounded
variation in various senses.

The result on the non-invariance of the class Fy with respect
to rotations can be extended to bases of quite general type. In
particular, the following theorem is true.

Theorem 2.1. If B € By N By N By, then the class Fg is not
invariant with respect to rotations, moreover, there exists a non-
negative function f € Fy such that f oy ¢ Fpg for some v € T'y,.

Note that if B differentiates L(R™), then the question on the
invariance of the class Fp with respect to rotations is trivial, in
particular, taking into account that a rotation is measure preserv-
ing mapping we conclude the invariance of Fy with respect to
rotations.

In the third section there are introduced definitions of sets of
singular rotations and there are established some results concern-
ing their structure.

Let B be a basis in R" and v € T',. The y-rotated basis B is
defined as follows

B(y)(z) = {z+7v(R—z): R€ B(z)} (z€R").
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Suppose B is translation invariant. Then it is easy to verify that
the differentiation of the integral of a “rotated” function fory with
respect to B at a point z is equivalent to the differentiation of the
integral of f with respect to the “rotated” basis B(y71) at a point
77!(x). Consequently, we can reduce the study of the behavior of
functions f o~ (y € I',) with respect to the basis B to the study
of the behavior of f with respect to rotated bases B(7) (y € Ty).

Let B be a basis from the class B; N Bpy N BNL. By virtue of
Theorem 2.1 there exists a function having a non-homogeneous be-
haviour with respect to rotated bases B(y) (y € T',), more exactly,
J [ is not differentiable with respect to B(y) for some rotations
and [ f is differentiable with respect B(y) for some 5 rotations.
Thus for f some rotations y are “singular” (non-differentiability
with respect to B(7)) and some rotations v are “regular” (differen-
tiability with respect to B(y)). In this connection naturally arises
problem: what kind of may be sets of singular and of reqular rota-
tions for a fized function? Note that by duality argument we can
restrict ourselves by studying sets of singular rotations.

The posed problem for the case of strong differentiability process
(i.e., for the case B = I) was studied in works of G. Karagulyan [6],
G. G. Oniani [12, 14, 15], G. Lepsveridze [8] and A. Stokolos [20].

In connection to the posed problem let us introduce rigor def-
inition of a set of singular rotations: Suppose B is a basis in R?
and B C T's. Let us call E a Wg-set if there exists a function
f € L(R?) with the following two properties:

f ¢ Fp(y) for every v € E;
[ € Fp(,) forevery v ¢ E.

Let us introduce also the definition of a set of "strongly” singular
rotations: Suppose B is a basis in R? and E C T'y. Let us call E
an Rp-set if there exists a function f € L(R?) with the following
two properties:

Dp) ([f,2) = 0o a.e. for every y € E;
f € Fp,) for every 4 ¢ E.

It is clear that each Rp-set is Wp-set.

When B = I we will use terms W-set and R-set. The defini-
tions of an R-set and of a W-set were introduced in [14] and [6],
respectively.

Now the problem can be formulated as follows: For a given basis
B what kind of sets are Wg-sets (Rp-sets)?

The following theorems give necessary conditions of topological
character for sets of singular rotations.

Theorem 3.1. For arbitrary translation invariant basis B in R?
each Wg-set has Gs, type.

Theorem 3.2. For arbitrary translation invariant basis B in R?
each Rp-set has Gy type.

For the case of W and R sets Theorems 3.1 and 3.2 were proved
by G. Karagulyan [6] and G. G. Oniani [14], respectively.

Let us introduce the following generalizations of notions of a
Whg-set and of an Rp-set:

Let B and H are bases in R" with B ¢ H and F C I',. Let us
call E a Wp y-set (W ;-set), if there exists a function f € L(R")
(f € L(R™), f > 0) with the following two properties:

f ¢ Fpyy) for every y € E;
f € Fyy) for every v ¢ E.

Let B and H are bases in R" with B ¢ H and E C I',,. Let us
call E an Rp j;-set (RE'H-set), if there exists a function f € L(R")
(f € L(R™), f > 0) with the following two properties:

Dpy ([ f,2) = o ae. for every v € B;
f € Fyy) for every y ¢ E.
If B = H, then instead of Wy g-set (R} p-set) we will use term
W-set (Rj-set).
Remark 3.1. It is clear that:
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1) If B = H, then the notions of Wp p-set (Rp p-set) and of
Whp-set (Rp-set) coincide;

2) each WEH(RE,H)‘S“ is Wp i (Rp i)-set;

3) each Wy n(Wy y, Rp.ar, R, yy)-set is Wp(W, Rp, Rj;)-set.

Remark 3.2. Taking into account conclusions of Remark 3.1 from
Theorems 3.1 and 3.2 we have: If B and H are translation invariant
bases with B ¢ H, then:

1) each Wp p-set is of G0 type;

2) each Rp y-set is of G type.

Consequently, taking into account Remark 3.1 again we have
also that: each W -set and each Wj-set is of G, type; each
R}, -set and each Rj-set is of G5 type.

Theorem 3.3. For arbitrary bases B and H with B ¢ H not
more than countable union of Rp y-sets (RE‘H-sets) is Wp y-set
(W,;”-set).

For non-empty sets By C Ty and Ey c I’y denote E\E; =
{1107 :m € Ei,72 € E}. A set E C Ty let us call symmetric if
=11E.

A basis B in R? let us call symmetric, it B(y) = B for every
7 € II. Note that the basis I(R?) is symmetric.

Remark 3.3. Let bases B and H with B ¢ H are given. It is easy
to see that if B is symmetric, then each WB.H(WE,H: Rp i, RE,H )-
set is symmetric.

In the forth section some classes of sets of singular rotations are
found. From obtained results it follows a characterization of not
more than countable sets of singular rotations for symmetric bases
from the class Byrz) N By N ByL.

Theorem 4.1. Let B € Byr2) N Br1 N Byy. Then for every not
more than countable set E C Ty and for every sequence of its
neighbourhoods (Vi) there is a non-negative function f € L(R?)
such that: X

1) For every v € E, Dy, ([ f,2) = 0o almost everywhere;

a7

2) For every k € N, f € Fyrynv,)- Consequently, for every
v ¢ Mizy Vi we have that f € FI(_.,);

3) If for 4 € Ty the condition D ([ f,z) = oo is valz'4 .'[‘or
points from some set of positive measure, then the same condition
1s valid almost everywhere.

Corollary 4.1. Let B € Bygz) N Bri N ByL. Then: )
1) every not more than countable symmetric set E C I'y is a
lV,;rset; A
2) every not more than countable symmetric set of Gy type is a
Rf -set.

Taking into account Theorems 3.1 and 3.2 from Corollary 4.1
we derive the following result.

Corollary 4.2. Let B is a symmetric basis from the class Bygz)N
By N Byy,. Then:

1) not more than countable set E C T'y is a Wp y-set (W,}'l -set)
if and only if E is symmetric;

2) not more than countable sct E C Ty is a Rp-set (R} -set)
if and only if E is symmetric and of G5 type.

From Theorem 4.1 we also derive the following result.

Corollary 4.3. Let B € Bygz) N Bri N Byr. Then there is a
non-negative function f € L(R?) for which the set

{y€T2: Dy ([f,2) =0 ae}

is of the second category and consequently, of the conti car-
dinality.

Corollary 4.4. Let B € Bygz) N By N ByL- Then therfz is a
Wg., -set of the second category and quently, of the cont
cardinality.

Let us say that a basis B has weak Besikovitch property if for
every non-negative function f € L(R") the set

{z: f(x) < Dp([f,z) < o0}
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is of zero measure. Note that by virtue of the result M. de Guz
. mén
and M. Mendrguez (see [5, Ch. IV, §3]) every basis B € Byga) N
‘(?;;]p N By has weak Besikovitch property. Here we note that in
it is found more general class of bases B € B havi
Besikovitch property. sy hering e
The next assertion follows from Corollary 4.3.

_quollary 4.5. Let B € Bygzy N By N By, If, additionally,
it is known that B has weak Besikovitch property, then there is a
R, 1-set of the second category and quently, of the conti
cardinality. v

Since for any basis B € By(gz) cach W 1(W5 1, Rp1, Rf )-set
is W (W§, Rp, Rj)-set, Corollaries 4.1-4.5 im;;ly cnrrespo'nding

results for Wp (W3, Rp, Rj)-sets, in particular, Corollary 4.2 im-
plies the following result.

Corollary 4.6. Let B is a symmetric basis from the cl

o fro e class BygayN
1) not more than countable set E C I'y is a Wp-set (W5 - ]

and only if E is symmetric; ! Wi e
2) not more than countable set E C Ty is a Rp-set (R-set) if

and only if E is symmetric and of G5 type.

Theorem 4.1 and its corollaries given above for the case B = I
were proved in [14].

In the fifth section we give a complete characterization of Wg-
sets and Rp-sets for a quite wide class of bases

G. Karagulyan [6] gave complete characterization of W-sets and
R-sets, namely, in [6] it was proved that:

1) a set E C I'y is W-set if and only if E is symmetric and of
Gso type.

2) a set E C 'z is R-set if and only if E is symmetric and of
G type.

D_cvcloping the scheme of proof suggested in [6], below we es-
tablish a characterization of Wp-sets and Rp-sets for a quite wide
class of bases.
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It is true the following theorem.

I'heorem 5.1, If a basis B € Byge) N Ber N B N By has
yon-reqular spherical halo function, in particular, if B € Bygz) N
Wyp 0By N BN (see Lemma 1.4), then:

1) every symmetric set E C Ty of Gso type is Wp 1-set;

2) every symmetric set B C I' of Gy type is Rp1-set.

The first statement of Theorem 5.1 we derive from the second
one on the basis of Theorem 3.3.

Taking into account Theorems 3.1 and 3.2 from Theorem 5.1
we obtain the following result.

Corollary 5.1. If a symmetric basis B € Byrz) N Ber NBp N
By, has non-regular spherical halo function, in particular, if B is
symmetric and B € Bygrz) N Bpr N By N By, then:

1) a set B c Ty is Wp-set if and only if E is symmetric and
of Gsq type;

2) a set B C Ty is Rpy-set if and only if E is symmetric and
of G5 type.

Corollary 5.2. If a symmetric basis B € Byge) N Ber N B N
By1, has non-reqular spherical halo function, in particular, if B is
symmetric and B € Byrz) N By N By N B, then:

1) a set E C Ty is Wp-set if and only if E is symmetric and of
Giso type;

2) a set E C Ty is Rp-set if and only if E is symmetric and of
G; type.

The function constructed in proof of Theorem 5.1 take values
both of positive and negative sign. Thercfore the method of proof
of Theorem 5.1 does not allow us to characterize Wi -sets and
Rj;-sets. Note that the problem of characterizing of Wi-sets and
Rj;-sets remains open even for the case B = L.

In the sixth section we construct singular Lebesgue-Stieltjes
measures having non-vanishing means almost everywhere.
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For a Lebesgue-Stieltjes measure p and a basis B, the numbers

5] _ = n(R)
8l 2) REB(z)l,lglnmR—oo |R| *
Dpwo)=  1m 4B

ReB(x), diam R—0 | R

are called the upper and the lower derivative with respect to B,
respectively, of u at a point z. If the upper and the lower deriva-
tive coincide, then their common value is called a derivative with
respect to B of y at a point z and denoted by Dp(u, z).
A basis B is said to differentiate a Lebesgue-Stieltjes measure
wif Dp(p, x) exists for almost all € R™;
A Lebesgue-Stieltjes measure p is called:
e singular if there is a Borel set E such that: |[E| = 0 and
#(A) = (AN E) for every Borel set A;
o discrete if it has the form: u = > ken Mikba, , where my. > 0
and d,, is the Dirac measure supported at a point a.
It is obvious that each discrete Lebesgue-Stieltjes measure is
singular.

It is well known that (see e.g. [21, Ch. V, §7]) if p is a singular
Lebesgue-Stieltjes measure p, then

Dq(p,x) =0 almost everywhere.

Singular Lebesgue-Stieltjes measures lose the “vanishing” prop-
erty if Q is replaced by an arbitrary translation invariant basis
which does not differentiate L(R™). Moreover, it is true the fol-
lowing result.

Theorem 6.1. For every translation invariant basis B which does
not differentiate L(R™) there exists a discrete finite Lebesque-Stiel-
Ljes measure pu such that

Dp(p,z) = oo almost everywhere.

For the case B = I, Theorem 6.1 follows from a result of
(i Karagulyan [7] about random measures in R™.

a1

Finally, I would like to express my deep appreciation to my sci-
entific supervisor Professor G. G. Oniani for collaboration during
research period and for fruitful considerations.

REFERENCES

(1] A. Beurling, H. Helson, Fourier-Stieltjes transforms with
bounded powers, Math. Scand. 1 (1953), 120-126.

[2] O. S. Dragoshanskii, Convergence of Fourier double series
and Fourier integrals of functions on T? and R? after rota-
tions of coordinates, Sbornik Math. 191 (2000), 1587-1606.

[3] M. 1. Dyachenko, Rotation of coordinate ares and two-
dimensional classes of functions with bounded generalized
variation, Moscow Univ. Math. Bull. 3 (2008), 26-30.

[4] C. Goffman, T. Nishiura, D. Waterman, Homeomorphisms
in Analysis, Mathematical surveys and monographs Vol. 54,
American Mathematical Society, 1991.

[5] M. de Guzmaén, Differentiation of integrals in R", Lecture
Notes in Mathematics, 481. Springer-Verlag, Berlin, 1975.

[6] G. A. Karagulyan, A complete characterization of R-sets in
the theory of differentiation of integrals, Studia Math. 181
(1)(2007), 17-32.

[7] G. Karagulyan, A necessary and sufficient condition for dif-
ferentiability of integrals of random measures in R™ over n-
dimensional intervals, Math. Notes 49 (1991), 375-378.

[8] G. L. Lepsveridze, On strong differentiability of integrals
along different directions, Georgian Math. J. 2 (1995), no.
6, 613-630.

[9] B. Lépez Melero, A negative result in differentiation theory,
Studia Math. 72 (1982), 173-182.

[10] J. Marstrand, A counter-example in the theory of strong dif-
ferentiation, Bull. London Math. Soc. 9 (1977), 209-211.
[11] A. M. Olevskii, Modifications of functions and Fourier series,
Uspekhi Mat. Nauk 40 (1985), 157-193 (Russian), transla-

tion: Russian Math. Surveys 40(1085), 181.224,

[12] G. G. Oniani, Differentiation of Lebesgue integrals, Thilisi

Univ. Press, Thilisi, 1998 (in Russian).




42

[13] G. G. Oniani, A resonance theorem for a family of transla-
tion invariant differentiation bases, Proc. A. Razmadze Math.
Inst. 168 (2015), 99-116.

[14] G. G. Oniani, On the differentiation of integrals with respect
to the bases By(0), East J. Approx. 3 (1997), 275-301.

[15] G. G. Oniani, On the strong differentiation of multiple inte-
grals along different frames, Georgian Math. J. 12 (2005), no.
2, 349-368.

[16] G. G. Oniani, On the integrability of strong mazimal fune-
tions corresponding to different frames, Georgian Math. J. 6
(1999), no. 2, 149-168.

[17] G. G. Oniani, On upper and lower derivatives of integrals
with respect to conver differentiation bases, Math. Notes 76
(2004), No.5, 702-714.

[18] A. A. Saakyan, On Bohr’s theorem for multiple Fourier se-
ries, Math. Notes 64 (1998), No. 6, 787-797; translation from
Mat. Zametki 64 (1998), No. 6, 913-924.

[19] A. M. Stokolos, An inequality for equi able rearrange-
ments and its applications in the theory of differentiation of
integrals, Anal. Math. 9 (1983), 133-146.

[20] A. M. Stokolos, On a problem of A. Zygmund, Math. Notes
64 (1998), 646-657.

[21] S. Saks, Theory of the Integral, 2nd ed., Dover Publications,
New York, 1964.

Publications

[ K. A. Chubinidze, On sets of singular rotations for translati
invariant bases, Transactions of A. Razmadze Math. Inst. 170
(2016) (to appear).

[IT] K. A. Chubinidze, Rotation of coordinate azes and integrebility
of mazimal functions, Book of abstracts of VI international
conference of the Georgian Mathematical Union, 99-100.

[ITI] K. A. Chubinidze and G. G. Oniani, Rotation of coordinate
azes and differentiation of integrals with respect to translation
invariant bases, Proc. A. Razmadze Math. Inst. 167 (2015),
107-112.

43

[IV] K. A. Chubinidze and G. G. Oniani, Note on the differentia-
bility of singular Lebesgue-Stieltjes es, Georgian Math.
J. 22 (2015), 349-354.

[V] K. A. Chubinidze and G. G. Oniani, Note on singular Lebesque—
Stieltjes measures, Proc. A. Razmadze Math. Inst. 164 (2014),
98-99.

[VI] G. G. Oniani and K. A. Chubinidze, Rotation of coordinate
azes and differentiation of integrals with respect to transla-
tion invariant bases, Abstracts of the International Confer-
ence “Function spaces and function approximation theory”
dedicated to 110th anniversary of academician S. M. Nikol-
skii (May 25-29, 2015, Moscow), pp. 43-46.




